

MICROWAVE RESEARCH IN CHINA

Weigan Lin

Chengdu Institute of Radio Engineering
 Chengdu, 610054
 People's Republic of China

Abstract

China needs microwave research to realize its grand goal of four modernizations.

Microelectronics, bioengineering, new materials, new sources of energy, oceanographic engineering and astronavigation have shown their importance and will boost our productive forces in the future.

Microwave research in China plays an active role in all these fields, is an area where talented people temper themselves through new experience and enjoys good prospects.

China needs research and development to realize its grand goal of four modernizations, especially the scientific research and development of microwaves, which in our opinion consists of microwave and lightwave theory and techniques and which in turn is embraced by microelectronics.

Many of the researchers in lightwave technology were formerly those in microwave, so operational technique and principles of devices and system used in lightwave technology such as guided modes, directional couplers, traveling-wave modulators and optical filters are almost exactly those used in microwaves. We can look forward to a wider transfer of idea and methods from the microwaves to the lightwave technology, and vice versa. Microelectronics emphasizes on miniaturization of electrical devices and system while optical fiber offers long transmission circuit with cross-section of minute size. Microelectronics is therefore vital in those fields that will boost the productive forces of our country, such as bioengineering, new materials, new sources of energy, oceanographic engineering and astronavigation. We are aware that we should cope with the increasing production needs and decreasing energy and materials resource availability in our country as elsewhere. We have worked hard ever since early 1950's, we have now more than a thousand universities and several thousand research institutes

throughout the country. Still, our institutes and universities are sending more students abroad. A growing number of foreigners are learning and teaching in China, in Shanghai, now 235 foreign scholars and professors are teaching in various colleges and more than 50 of them have been awarded honorary professorships by Fudan, Tongji and Jiaotong Universities. Fourteen Shanghai universities have signed agreements on academic exchanges with 127 universities in France, Britain, Federal Germany, Japan, the United States and other countries.

China is now embarking on an ambitious programme in educational development and aims to increase her annual output of graduates sixfold by 1990 to six million.

Beijing hosts the first large-scale international defence exhibition ever held in China, opened January 28, 1986, catering to country's drive to modernize its defence system and aiming to introduce advanced technology and to provide opportunities for co-operation between Chinese and foreign firms, with products on display of aviation, missiles, defence electronics, conventional weapons worth some \$10 million, of which 83 million are for sale.

A division manager of Hughes Aircraft Company where many well known microwave people are being employed is quoted to have come to establish additional contacts with Chinese departments and to make a survey of the country and then to negotiate with his Chinese counter parts on some specific co-operative projects.

To some scholars from outside of our country, laboratory tours in some universities show experimental facilities that place China closer to the state of the art than they had believed they would find us to be.^[1] We microwave people are now tackling many things in current media, such as microstrip, fiber-optics, MM wave work, laser, optical telescope used for tracking artificial satellites, silicon and gallium arsenide microwave^[2] and optical devices^[3], gyrotrons^[4],^[5] radars^[6] in our researches to be caught up in as

many different areas as possible. Civil role for radar industry, nuclear industry and aviation industry is growing in addition to meeting the defence needs.

Today we make both coax and waveguide instruments up to 100 GHz. In Shanghai, visitors found in the 26th. radio-factory [1] that all the 50 milling machines and 50 lathes, looking much like the standard industrial equipments used over the years in manufacturing microwave components in the US are made by Chinese in China but one Italian lathe.

We enlisted graduate students again in year 1978, in its Ph.D. graduate ceremony in year 1985, the Chengdu Institute of Radio Engineering conferred eight Ph.D. degrees[7], I myself was the mentor of four of the students who received the Ph.D. degree at that ceremony, having as guests a group from the Arizona State University headed by the vice president for academic affairs. Part or whole of the research work of these eight doctoral students has been published [7]-[14].

We are going to accept post doctoral graduate students in 73 research institutes and some of our key universities including Chengdu Institute of Radio Engineering, in 103 disciplines.

Microwave research in China now is going smoothly mainly in the following areas

(1) Microwave and light wave source developments[15]-[21] , mostly for laboratory use, most of which are similar to what might be found in the United States, (1,3) for instance we make 3 mm Oscillator employing 8 mm Gunn Diode, based on the Van der Pol model[11], with an output of 10 mW CW at 96 GHz,

(2) Light wave Theory and Techniques, drawing heavy attention in China[22]-[30], a Sino-Japanese Joint Meeting on Optical Fiber Science and Electromagnetic Theory having been held in May, 1985 in Beijing and a Sino-British Joint Meeting on Optical Fiber Communication being scheduled on May, 1986. A Sino-French Joint Meeting on Optical Fiber Science is being contemplated late this year or early next year in Chengdu.

(3) TEM Transmission Line, a popular area of research in China[31]-[40] ;

(4) Microwave Networks, viewed as an integral part of microwave field theory and covering a wide range of application problems[41]-[51] ;

(5) Microwave field theory researches always attract interest of theoreticians in our land[52]-[69].

Concluding remarks: Listed are some of the research works recently we have done, yet from colleagues outside our mother land, we still have much to learn.

Literatures

- (1) MTT-S China Diary: Shanghai, Theodores (ed.), "Microwave Journal," December 1983, 24-38; Pt. II, Visit to Nanjing, M.J., January 1984, 34-43; Pt.III, Chengdu Sojourn, M.J., February, 1984, 40-54; Pt. IV., Journey to Xian, M.J., March 1984, 50-59; Pt.V, Beijing, M.J., April, 1984, 24-39.
- (2) Zhang Yanbin, Li Shihai, Zhang Shang-qiong, Zhang Chuongrin, Chen Xiaojian, "InGaAs/InP PIN Photodiode for Long-Wavelength Optical Communications, Research & Progress of SSE, Vol.5, No. 3, August, 1985.
- (3) Liu Shenggang, "On the Electron Equilibrium Distribution Function in the Kinetic Theory of Electron Cyclotron Maser," Int. J. Infrared and Millimeter Waves, Vol.2, No.6, p.1253, (1981).
- (4) Liu Shenggang, "Electron Cyclotron Resonance Maser with Axisymmetrical Structure, Scientia Sinica (Series A), Vol. XXV, No.2, p.203, Feb. (1982).
- (5) Yang Zhonghai, Mo Yuanlong, and Liu Shenggang, "Kinetic Theory of Electron Cyclotron Maser with Resonator Having Arbitrary Longitudinal Field Distribution," Scientia Sinica (Series A), Vol. XXVI, No.12, p.1338, Dec. (1983).
- (6) Zhou Zheng-Ou, Ding Yi-Yuan, Gong Yao-Huan, Huang Shun-Ji, "A Bistatic Radar for Geological Probing," M. J., Vol.27, No.5, p. 257, May (1984). "Geological Measurements of Dielectric Constant," M.J., Vol.27, No.7, p.159, July (1984), Ding Yi-Yuan, Wan Tian-Ji and Gao Yuan-Jing, "Radar Measurement of Glacier Thickness," M.J., Vol. 27, No.10, p.157, October (1984)
- (7) Zeng Ling-Ru, "A Method of Solving Transmission Lines of Specific Cross-Section," Acta Physica Sinica, Vol. 31, No.6, p.709, (1982)
- (8) Wang Chunyi and Liu Shenggang, "Double Stream Electron Cyclotron Maser," Int. J. Electronics, Vol.57, No.6, Dec. (1984)
- (9) Ruan Chen-Li, "Parametric Down Converters," Acta Electronica Sinica, Vol. 13, No.2, March (1985)
- (10) Yang Zhonghai and Liu Shenggang, "Gyrotron with Quasi-Optical Cavity of Special Configuration, Int. J. Electronics, Vol.57, No.6, p.1003, Dec. (1984)
- (11) Wu Zheng-De, "A New Circuit Model of the Harmonic Oscillator," Acta Electronica Sinica, Vol.13, No.4, p.36, July (1985).
- (12) Xu Kong-Yi and Liu Shenggang, "Theory of Open Resonator Formed by Irregular, Waveguides," Acta Electronica Sinica, Vol.13, No.4, July (1985)
- (13) Liu Yao-Wu and Zhang Qi-Chao, "Study of Dispersion for Microstrip Meander Line Periodic Slow-Wave Structure,"

Acta Electronica Sinica, Vol.12, No.4, July (1984)

(14) Pen Zhong-Qiu, "The Equivalent Admittance of the Longitudinal Shunt Slot and the Effect of the Short-Plane," Acta Electronica Sinica, Vol.12, No.2, Mar. (1984)

(15) Jiachi, Gui Decheng, Lin Jinting, "Research of Basic Physical Properties for Dual-Dopant Silicon Crystal," Research & Progress of Solid State Electronics, Vol.5, No.1, p.17-24, Feb. (1985)

(16) Wang Haisheng, Gao Baoxin, "Loop Feedback FET Oscillator Stabilized with a Dielectric Resonator," Research & Progress of Solid State Electronics, Vol.5, No.1, p.31-37, Feb. (1985)

(17) Guo He-Zong, Chen Zeng-Gui, Zhang Shi-Chang, and Wu De-Shun, "The Study of a TE₀₂ Mode Gyromonotron Operating at the Second Harmonic of the Cyclotron Frequency," Int. J. Electronics, Vol. 51, No.4, p.485, (1981) (Invited paper)

(18) Zhou Le-Zhu, Xu Cheng-He, and Gong Zhong-Lin, "General Theory and Design of Microwave Open Resonators," Int. J. Infrared and Millimeter Waves, Vol.3, No.1, p.117, (1982)

(19) Liu Shenggang, Li Hongfu, Ni Zhijun, and Wang Wenxian, "An 15GHz Experimental Gyromonotron," J. Chengdu Institute of Radio Engineering, No.1, p.102 (1984)

(20) Wu Zheng-de, "Study on the Harmonic Extraction Technique Beyond the Limited Operating Frequency of Devices," Ph.D. dissertation, Chengdu Institute of Radio Engineering, Chengdu, Sichuan, China, (1984)

(21) Wu Zheng-de, "CAD of the Cap Structure Oscillator," Journal of China Institute of Communications, Vol.4, No.3, p.49, (1983)

(22) Fang Jun-Xin, "Remarks on the intrinsic properties of guidedwave light," Applied Scientific Research, Vol.41, Nos. 3/4, pp.355-357, (1984)

(23) Huang Hungchia, Wang Zi Hua, "Analytical approach to prediction of dispersion properties of step-index single mode optical fibers," Electronics Letters, Vol. 17, No.5, p.202, (1981)

(24) Wu Yizun and Yang Xinwei, "Analysis of Grating Couplers by Equivalent Current Theory," Scientia Sinica (Series A), p.1217, (1982)

(25) Yang Shuwen, "Beam Propagation Method to Analyse Gradient Index Optical Guide," Journal of China Institute of Communications, No.3, p.15, July (1984)

(26) Wang De-Ning, Pen Hui-Zhen, "The Approximate Expressions of the Four Layer Asymmetric Waveguide Characteristics," Acta Physica Sinica, Vol.33, p.1618, (1983)

(27) Zhang Cheng-fu, Wang Shi-jin, "On the Stability of Drift Wave in the Cylindrical Plasma," Acta Physica Sinica, Vol.33, p. 1358, (1983)

(28) Liao Yanblas, Pan Anpei, Lee Mei and Qin Xiaorong, "An Analytical Method for Measuring Birefringence Properties of Single Mode Fiber," Acta Optica Sinica, Vol.4, p.1066, (1984)

(29) Li Ruiyong, Sheng Yuohin, Wang Bingkui and Zhiming, "Mode dispersion properties of the metal cladded dielectric waveguides," Acta Optica Sinica, Vol. 4, p.10, June (1983)

(30) Jin Guanghai, Zhu Guojun and Wan Lide, "Deduction of the 'Half-Wave' Voltage Equation in the Optical Waveguide Modulator with the Coupling-Node Theory Journal of China Institute of Communications, Vol.3, p.23, July (1984)

(31) Zeng Lingru, "A Method of Solving Complicated Boundary Value Problems with Its Application to Coupled Rods, Scientia Sinica(Series A), Vol.25, No. 10, p.1100, October (1982)

(32) Lin Weigan, Zeng Ling-rur, "On the Characteristic Impedance of a Coaxial line With Elliptic Outer Conductor and Rectangular Inner Conductor," Acta Physica Sinica, Vol.1, p.21, (1981)

(33) Weigan Lin, "A Critical Study of the Coaxial Transmission Line Utilizing Conductors of Both Circular and square Cross Section," IEEE Trans. on Microwave Theory and Tech., Vol.30, No.11, pp.1981-1988, Nov. (1982)

(34) Weigan Lin, "Polygonal Coaxial Line With Round Center Conductor," IEEE Trans. on Microwave Theory and Tech., Vol.MTT-33, No.6, p.545, June (1985)

(35) Weigan Lin, "A New Transmission Line of Round Conductor and Parallel Plane With Symmetrically Placed Slit," IEEE Trans. on Microwave Theory and Tech., Vol.MTT-33, No.8, p.739-740, (1985)

(36) Weigan Lin, "Computation of the Parallel-Plate Capacitor with Symmetrically Placed Unequal Plates," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-33, No.9,

(37) Wang Bing-Zhong, Xue Liang-Jin, "Empirical Formulas for Finline Design," Acta Electronica Sinica, Vol. 13, No.1, Jan. (1985)

(38) Mohamed D. Abouzahra, Comments on "Polygonal Coaxial Line With Round Center Conductor," IEEE Microwave Theory and Tech., Vol.33, No.1,

(39) Ling-Ru Zeng, "Accurate Solutions of Elliptical and Cylindrical striplines and Microstrip Lines," IEEE Trans. Microwave Theory and Tech., Vol.MTT-34, Feb. (1986)

(40) Xu Jian-Min, "Accurate Characteristic Impedance of Transmission-Line With Elliptic Outer Conductor and Microstrip Inner Conductor," Acta Elec-

tronica Sinica, Vol.12, No.4, July (1984)

(41) Wu Zheng-de, "Theoretical Study on the Radial Line Transformer in a Rectangular Waveguide," Electronic Letter Vol.20, p. 256, March (1984)

(42) Weigan Lin and Zhang Zhiqing, "Orthogonal Modes in a Rectangular Cavity," Scientia Sinica (Series A), Vol.28, No.1, Jan. (1985)

(43) Qian Jing-Ren, "New Narrow Dual-Mode Bandstop Waveguide Filter," IEEE Trans. on Microwave Theory and Tech., MTT Vol.31, No.12, p.1045-1050 (1983)

(44) Ruan Cheng-Li, "Analysis of the Reflection Characteristics of 90° Phase Shifter," Acta Electronica Sinica, Vol.11, No.6, Nov. (1983)

(45) Chen Zhen-Cheng and Kuai Zhen-Gi, "An Advanced Microstrip Series-Feed Divider/Combiner," Acta Electronica Sinica, Vol.12, No.3, May (1984)

(46) Tsao Kang-bai, "Dou Wen-bin and Xie Liang-jin, "Study of Compact Resonance Cavity for Hydrogen Maser," Acta Electronica Sinica, Vol.13, No.3, May (1985)

(47) Xiao Ding-Shan, "Orthogonal Field Magnetization on Microstrip," Acta Electronica Sinica, Vol.12, No.1, Jan. (1984)

(48) Wang Han-li, Zheng Ri-rong, "Further Research on Eigenvalues of Corrugated Systems," Acta Electronica Sinica, Vol.12, No.1, Mar. (1984)

(49) Chen Meng-You, An Hong-ming, Leiming, "Some Basic Characteristics of the Elliptic Cavity," Acta Electronica Sinica, Vol.13, No.4, July (1985)

(50) Ma Bai-lin, "Electromagnetic Coupling into a Rectangular Conducting Cavity Comtaining a Conducting Wire Through a Slot," Acta Electronica Sinica, Vol.13, No.1, Jan. (1985)

(51) Wen Jun-ding, "On H Plane Dielectric Loading for H Plane Ferrite Phase Shifter," Acta Electronica Sinica, Vol.12, No.1, Jan. (1984)

(52) Luan Wenyui, "The Continuation of Electromagnetic Fields," Scientia Sinica, (Series A), Vol.27, p.492, (1984)

(53) Weigan Lin, "Power Carrying Capacity Reduction in Straight Regular Waveguide Containing Foreign Conducting Bodies," Scientia Sinica (Series A), Vol.27, p.184, (1984)

(54) Weigan Lin, "The Problem of a Conducting Sphere Resting on an Earthed Plane in a Uniform Perpendicular Field and its Applications," Electronics Letters, Vol.20, No.2, p.122-124, 2nd February, (1984)

(55) Shen Haoming, "Rigorous Transient Solution to the Current Response on a Dipole," Scientia Sinica(Series A), Vol.28, No.5, May (1985)

(56) Lin Xiaoyun and Chen Rulung, "Potential Distribution and Capacitance Between Two Concentric Square Conductors," Journal of Electrostatics, 17(1985, 209-212, No.2, July (1985)

(57) Chen Hankui, Li Mingyi, "Near Field Computation on Electromagnetic Scattering by Moment Method," Scientia Sinica (Series A), Vol.26, No.10, Oct. (1983)

(58) Gu Molin, "On Some Theoretical Limitations of Microwave Resistive Mixer," Journal of Applied Sciences, Vol.1, No.1, p. 17-24, Jan. (1983)

(59) Zhang Xin-Ling and Cuo Min-yan, "A Method for Calculating the Basic Parameters of three Dimensional Cavity Resonators," Vol.13, No.2, March(1985)

(60) Song Yinsuo, "A Three-Dimentional Field Theory for a Ferrite Loaded Cyclic H-Plane Waveguide Junction," Journal of Applied Sciences, Vol.3, No.2, April (1985)

(61) Zhu Sheng-Chuan, "The Phase Shift and Loss of Microstrip Ferrite Phaser," Acta Electronica Sinica, Vol.13, No.2, March (1985)

(62) Zhou Le-Zhu, Xu Cheng-He, "Design of Microwave Open Resonators With Given RF Field Profiles," Acta Electronica Sinica, Vol.12, No.5, Sept. (1984)

(63) Zhou Xuesong, "Normal and Abnormal Vector Wave Functions and Their Conversion Relations," Scientia Sinica (Series A), Vol.9, p.1226, Sept.(1984)

(64) Pan Sheng-gen, "On Dyadic Green's Functions in Spherical Coordinates in Free Space," Acta Electronica Sinica, Vol.13, No.5, Sept. (1985)

(65) Zhang Shan-jie, "The Dyadic Green's Function for Coaxial Cavity," Acta Electronica Sinica, Vol.12, No.1, Jan. (1984)

(66) Zhang Shan-Jie, Jin Jian-ming, "The Solution of the Dyadic Green's Functions for Cylindrical Cavities by Image Method," Acta Electronica Sinica, Vol.12, No.5, Sept.(1984)

(67) Zhang Shan-Jie, Jin Jian-ming, "Finite Element Analysis of Waveguide Partially Filled with Anisotropic Dielectric Material," Acta Electronica Sinica, Vol.13, No.4, July (1985)

(68) Guo Yun, Zhang Meidun, "Experimental Investigation of Optical Fiber Attenuation Measurement by the Backscattering Method," Journal of China Institute of Communication, Vol.1, p.54, Jan. (1984)

(69) Ma Bai-lin, "Equivalence between a Narrow Conducting Strip and a Thin Conducting Wire,"Acta Electronica Sinica, Vol.12, No.4, July (1984)